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1 INTRODUCTION
The subject of determining the inherent system noise levels present in modem broadband 

closed loop seismic sensors has been an evolving topic ever since closed loop systems became 
available. Closed loop systems are unique in that the system noise can not be determined via a 
blocked mass test as in older conventional open loop seismic sensors. Instead, most investigators 
have resorted to performing measurements on two or more systems operating in close proximity 
to one another and to analyzing the outputs of these systems with respect to one another to ascer 
tain their relative noise levels.

The analysis of side-by-side relative performance is inherently dependent on the accuracy of 
the mathematical modeling of the test configuration. This report presents a direct approach to 
extracting the system noise levels of two linear systems with a common coherent input signal. 
The mathematical solution to the problem is incredibly simple; however the practical application 
of the method encounters some difficulties. Examples of expected accuracies are presented as 
derived by simulating real systems performance using computer generated random noise. In 
addition, examples of the performance of the method when applied to real experimental test data 
are shown.
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2 HISTORY
Here at the Albuquerque Seismological Laboratory (ASL), closed loop systems have been 

evaluated for over 17 years. Normally, instruments of the same manufacturer with closely 
matched frequency response functions whose internal noise levels were approximately equal 
were the subjects of these investigations at ASL. A system model describing these conditions 
was derived (see Peterson et al. 1980) and applied to numerous closed loop system evaluations 
over those 17 years. In addition, this model was occasionally applied to instruments whose char 
acteristics were significantly different.

Other agencies have also evaluated closed loop systems; they have used various linear sys 
tem models to process their data. The net result is that test results may not be directly compara 
ble between agencies because the analysis depends on the assumptions which were made in 
modeling the systems.

Recently, the need to conduct evaluations between instruments from different manufacturers 
has become a more frequent requirement. The assumptions of closely matched frequency 
response functions and approximately equal noise levels, which was made in the model derived 
above, does not necessarily hold if one is testing instruments from different manufacturers.

In addition, ASL recently became involved in a mutual test and evaluation program with 
other agencies in which the direct comparison of test results is necessary. It was obviously time 
to take a fresh look at the models used to evaluate closed loop systems and to attempt to obtain a 
general model applicable to all systems. In the process of analyzing the general case, it was dis 
covered that, since the objective of most evaluations was the noise levels of the systems under 
test, the solution to the problem is relatively simple and straight forward.
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3 MODEL MATHEMATICAL RELATIONSHIPS
The system to be evaluated is modeled in Figure 3.1 where X is assumed to be the coherent 

ground motion power spectral density (PSD) input to both systems. All quantities in the figure 
are assumed to be functions of frequency. Experimentally, the observer does not know X, Nt , 
and N2 ; the signals appearing at ports 1 and 2 are the only two time functions whose PSD func 
tions (Pn and 7*22) a1"6 available for measurement and analysis. In addition, the system transfer 
functions (Hl and //2) are assumed to be known. The circle containing "S" denotes a summing 
junction.

11

Figure 3.1 Linear system model of side-by-side evaluation of two seismometer systems.

3.1 BASIC MODEL EQUATIONS
Figure 3.1 contains a block diagram depicting the configuration of two seismometer systems 

operating in close enough proximity to one another that the seismic signal input power X may be 
assumed to be at the same level and coherent between the sensors. The two systems are assumed 
to have system transfer functions //t and H2 which are not necessarily equal. In addition the sen 
sors are assumed to be generating incoherent self noise powers Nl and N2 referred to the input, 
not necessarily equal.

The relationships between power at various points in the block diagram in Figure 3.1 can be 
written in terms of system equations which relate the power outputs from the systems to the 
power appearing at the inputs of the systems. The power spectral density of the output of system 
1 is given by

Equation 3.1

and the same quantity for system 2 is
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P22 =| H2 |2 [X +WJ Equation 3.2 

The cross spectral density between the outputs of the two systems may be written as

P12 =H}H2X Equation 3.3

3.2 SOLUTION OF MODEL EQUATIONS
The solution of these three equations depends on the desired information one needs to 

acquire. In the case of test and evaluation of two seismometers operating side-by-side, one fre 
quently needs estimates of the noise levels associated with the subject instruments. This infor 
mation can easily be obtained directly from the three equations without resorting to intermediate 
definitions of additional quantities such as the coherence function or the signal-to-noise ratio 
(SNR) as follows. Simply solve Equation 3.1 for N^ to yield

N. =  --X Equation 3.4 
\H,f *

Substituting for X from Equation 3.3 yields

^11 ^12
Nl =   - -  ; Equation 3.5 

Similarly, solving Equation 3.2 for N2 and substituting for X from Equation 3.3 yields

22 12N2 =   - -  - Equation 3.6

The two system noise power spectra in Equations 3.5 and 3.6 are expressed in terms of 
directly measurable quantities at the outputs of the two test systems and the system transfer func 
tions. These two equations are simply the expression that the incoherent noise power (/>WW ) is 
equal to the total system output power (Ptota[) minus the coherent input power (Pcoherient ).

Pnoise = Ptotal ~ P coherent Equation3.1

or the more familiar expression

P total = P coherent* P noise EqUation3.8
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4 COHERENCE
Since the system noise spectra can be derived directly, as has been demonstrated above, the 

question arises as to the utility of the coherence function. The coherence function can be used to 
make preliminary estimates of the systems SNR's and to place lower limits on the SNR's as will 
now be shown.

The coherence function is defined as (see Bendat and Piersol, 1971 p 32)

\P \2
yz =     Equation 4.1 

"11^22

Substituting for /*,,, P22, and Pi2 from equations 3.1,3.2, and 3.3 respectively yields

Y* =   i       i      Equation 4.2

Equation 4.3

The response functions divide out of the expression leaving
X2

X2 +X(N1 +N2)+N1N2 

Inverting, multiplying both sides by X2 , and dividing both sides by N{N2 yields

1 X2 X2 X X , ---  =   +- +- +1 Equanon

Rearranging we have

SHH+I+i= ° Equatim 4- 5
This expression relates the power SNR's of the two channels to the coherence and it is in 

the form of the general equation of an equilateral hyperbola. Figure 4.1 presents the interrela 
tionship of the two channel SNR's for 9 values of coherence spaced 0.1 apart and Figure 4.1 
extends the plot to high values of coherence extending from 0.90 to 0.99.

The asymptotes to these hyperbolas are given by

XX v2-  = -  =   z Equation 4.6
#1 #2 1-f

Therefore, given a value of the coherence between the output signals of a side-by-side test 
of two instruments, the power SNR's in both instruments must be at least as high as the value 
given by Equation 4.6. Since it is unlikely that, under low background conditions, the SNR on 
one instrument will greatly exceed that in the other if the PSD's are somewhat equal, the plots in 
Figures 4.1 and 4.2 can be used to obtain quick estimates of the system SNR's.
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The special case of equal SNR's in both channels can be analyzed by letting N{ = N2 

(  =  ) in Equation 4.5 and solving for the quadratic for the SNR. The root is found to be

X X

N2 1-y
Equation 4.7

This condition is the special case of equal noise in both sensors which was modeled at ASL 
earlier (see Peterson et al. 1980).

100 1000

X/N2

Figure 4.1 The interrelationship of the Figure 4.2 The interrelationship of the
channel power SNR's and coherence at low lev- channel power SNR's and coherence at high
els of coherence. levels of coherence.

For convenience, representative minimum SNR's (the asymptotes to the hyperbolas) per 
taining to a series of coherence values are tabulated in Table 4.1.
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Coh

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Min 
SNR

0.1
0.3
0.4
0.7
1.0
1.5
2.3
4.0
9.0

Coh

0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

Min 
SNR

10.1
11.5
13.3
15.7
19.0
24.0
32.3
49.0
99.0

Coh

0.991
0.992
0.993
0.994
0.995
0.996
0.997
0.998
0.999

Min 
SNR

110.1
124.0
141.9
165.7
199.0
249.0
332.3
499.0
998.9

Table 4.1 Tabulation of minimum possible SNR values for various coherence levels. These 
numbers are the asymptotes to the hyperbolas in Figures 4.1 and 4.2 corresponding to the values 
of coherence listed.
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5 MODEL PERFORMANCE ON DUMMY NOISE DATA
The performance of this simple model has been evaluated by applying it to the analysis of 

artificially generated data whose power levels are accurately known. A random number genera 
tor (see Stearns 1988, pp.52-54) was used to create uncorrelated time sequences to represent Nlt
N2, and X whose power spectral density levels were accurately known. Both W, and N2 were the 
summed with X to create time sequences with known amounts of coherent and incoherent power. 
For the first test configuration Hl and H2 were considered to both be equal to 1.

Direct Noise Calculation
POWER SPECTRAL DEHSITIES

Segments averaged 17 
Frequencies smoothed 7 
14 MAR 89 (LGH) 
09:42:15 

I 95X CONFIDENCE LIMITS

I I I II 15

1 10 

PERIOD, SECONDS

Direct Noise Calculation
POWER SPECTRAL DENSITIES

Segments averaged 17 
Frequencies smoothed 7 
14 MAR-89 (LGH) 
09:46:23 

I 95X CONFIDENCE LIMITS

PERIOD, SECONDS

Figure 5.1 PSD estimates for the total Figure 5.2 PSD estimates for the total
power (PI 1 = 2) and the noise power (Nl = 1) power (P22 = 2) and the noise power (N2 =1)
in the first channel (SNR =1). in the second channel (SNR =1).

Figures 5.1 and 5.2 contain the results of the analysis process when the input powers were 
all equal (X = TV, = N2= 1). These parameters yield a SNR of 1 for both channels. The plotted
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PSD estimates have been treated as though they were instrument acceleration output spectra cor 
rected to real displacement ground motion; therefore they are not flat as one would expect for 
white noise. Instead, the slope of the plots closely resembles the noise output of noisy seismic 
sensors as will be apparent below.

Note that most of the PSD estimate plots herein contain a 95% confidence limit bar at the 
bottom of the title block. This error bar is provided to give the reader an approximate idea of the 
probable error in the estimates. It is plotted with a fixed length associated with data with 224 
degrees of freedom in all figures. All spectral estimates used to perform the calculations in 
Equations 3.4, 3.5, and 3.6 had at least 224 degrees of freedom obtained by smoothing over 7 
frequencies in the frequency domain (see Bendat & Piersol 1971, pp.327-329) followed by aver 
aging over 16 segments. Further smoothing will increase the number of degrees of freedom but, 
as Figure 5.5 (replotted here from the table in Munk et al. 1959, p.291) indicates, the change in 
the confidence limits as the number of degrees of freedom increases beyond 224 is not great. 
Therefore, a fixed length 224 degrees of freedom error bar has been plotted in all figures.

10.0.

1.0

CO
£ 
S 
3
w u 
^ w
Q

0.1

0 100 

DEGREES OF FREEDOM

200 300

dom.
Figure 5.3 The dependence of the 95% confidence limits on the number of degrees of free-

The individual spectra in Figures 5.1 and 5.2 are rather rough particularly at short periods. 
Additional smoothing would make the plots more appealing to the eye; in addition, experiments 
at higher SNR's revealed that more smoothing increased the accuracy of the estimates of the 
noise levels. Therefore, Figures 5.4 and 5.5 present the same data as Figures 5.1 and 5.2 after a 
significantly greater degree of smoothing. The added smoothing will be referred to as "super- 
smoothing" in this paper. Note that much of the jitter at short periods has been evened out and 
the relationship between the two PSD estimates is much clearer in the second two figures.
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The justification for and the type of smoothing operation chosen comes in the realm of 
what the author will refer to as "spectral gardening". No attempt will be made to rigorously jus 
tify it mathematically. Instead, the author will cut and trim the PSD estimates as needed to make 
the process work! The details of and partial justification for the smoothing operation used to 
create Figures 5.4 and 5.5 will be presented in Section 6.

i<rn

T \ I I II

Direct Noise Calculation
POWER SPECTRAL DENSITIES

Segments averaged 17 
Frequencies smoothed 7 
14-MAR-60 (LGH) 
00:25:04 

I 95* CONFIDENCE LIMITS

\ III II15 I I I I I 11

Direct Noise Calculation
POWER SPECTRAL DENSITIES 
PK        

NE 0  »  6 

Segments averaged 17 
Frequencies smoothed 7 
14-MAR-69 (LGH) 
09:26:13 

I 95% CONFIDENCE LIMITS

PERIOD, SECONDS

1 10 

PERIOD, SECONDS

Figure 5.4 PSD estimates for the total 
power (PI 1 = 2) and the noise power (Nl = 1) 
in the first channel with supersmoothing.

Figure 5.5 PSD estimates for the total 
power (P22 = 2) and the noise power (N2 =1) 
in the second channel with supersmoothing.

The supersmoothed estimates in Figures 5.4 and 5.5 agree very closely with what one 
should expect. The estimated total power in both channels (/>,, and P22) is approximately twice 
as high as the estimates for the noise in each channel as it should be. When averaged over the 
entire band (4 to 4096 seconds), the estimate of the noise power in the first channel (NJ is 5.8 % 
lower than it theoretically should be, and the estimate of the noise power in the second channel 
(N2) is 1.4 % too low (see the first line of table 5.1). The averaged estimated SNR for channel 1 
was calculated to be 0.927 and for channel 2 it was 0.905 (theoretically they should both be 1). 
Obviously, the estimated SNR is not equal to these numbers across the entire band because the
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PSD estimates are not perfectly white; variations do exist particularly at longer periods. How 
ever, the variations lie well within the probable confidence limits shown in the header of the fig 
ures.

x 10 £

I 10"

1 I T I T TT71 I T I T \\

Direct Noise Calculation
POWER SPECTRAL DENSITIES 
Pii      

Hi o  » e 
Segments averaged 17 
Frequencies smoothed 7 
21 MAR 89 (LGH) 
14:27:11 

I 85% CONFIDENCE LIMITS

J

Hz 5!

NSI °l _

i i i i 1 1 1

1 10 

PERIOD, SECONDS

a. 10 
1000 1

Direct Noise Calculation
POWER SPECTRAL DENSITIES

Segments averaged 17
Frequencies smoothed 7
21 MAR -39 (LGH)
14:29.03

I 95% CONFIDENCE LIMITS .

1 1 1 1 1 1 1

PERIOD, SECONDS

Figure 5.6 PSD estimates for the total 
power (PI 1 = 2.0) and the noise power (Nl = 
1.0) in the first channel (SNR =1) with super- 
smoothing.

Figure 5.7 PSD estimates for the total 
power (PI 1 = 1.03125) and the noise power 
(Nl = 0.03125) in the second channel (SNR 
32) with supersmoothing.

Figures 5.6 and 5.7 contain the results of direct model processing of data from two channels 
with significantly different SNR's. The results are not as accurate as were those for the equal 
SNR case but they are readily usable. The averaged estimate of the first channel noise level is 
6.9 % lower than theoretically predicted while the averaged estimate of the second channel noise 
level is 67.3 % higher than predicted (see line one of Table 5.6). The averaged estimated SNR 
for channel 1 was 1.007 and for channel 2 it was 15.95 (theoretically, the first SNR should have 
been 1 and the second should have been 32). The error in the estimates for channel 2 are larger 
than one should expect; possibly other samples of noise would yield better results. Despite the 
decline in accuracy, the analysis process shows that channel 1 is definitely noisier than channel 2 
and it gives a credible estimate of the noise levels in each channel.
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Direct Noise Calculation
POWER SPECTRAL DENSITIES

Segments averaged 17
Frequencies smoothed 7
21 MAR-B9 (LGH)
10:40:07

T 85* CONFIDENCE LIMITS

Direct Noise Calculation
POWER SPECTRAL DENSITIES 
m

Segments averaged 17 
Frequencies smoothed 7 
21 MAR-69 (LGH) 
10:44.37

957. CONFIDENCE LIMITS

t 10 

PERIOD, SECONDS

1 10 

PERIOD, SECONDS

Figure 5.8 PSD estimates for the total 
power (Pll = 1.03125) and the noise power 
(Nl = 0.03125) in the first channel (SNR = 32) 
with supersmoothing.

Figure 5.9 PSD estimates for the total 
power (P22 = 1.03125) and the noise power 
(N2 = 0.03125) in the second channel (SNR = 
32) with supersmoothing.

Figures 5.8 and 5.9 contain the results of direct model analysis of two low noise channels. 
The PSD estimates for the averaged noise level in channel 1 are 5.2 % lower than theoretically 
predicted while the estimates for the averaged noise level in channel 2 are 18.3 % lower than 
predicted (see the last line of Table 5.6). The averaged estimated SNR for channel 1 is 29.9 and 
for channel 2 it was 32.9 (theoretically they both should have been equal to 32). These estimates 
are quite remarkable considering the branch of mathematical science used to derive them (the 
statistical analysis of random processes).

Tables 5.1 through 5.6 contain complete summaries of the model performance in analyzing 
dummy data at various combinations of SNR levels extending from a SNR of 1 to a SNR of 32. 
The real power levels listed in the tables were calculated from the original random time series 
(see Stearns 1988, pp.52-54). The calculated estimates of the PSD levels were made by averag 
ing each PSD over the entire range of the estimate (1024 data points extending from 4 to 4096 
seconds). The % err is the % deviation between the calculated PSD of the original random time
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series and the average of the PSD estimates obtained by applying the direct model analysis. 
Therefore, the % error figures are average deviations over the entire band; the error at any given 
period may be greater or less than the number shown.

The data in the first line of each table corresponds to a channel 1 SNR of 1, the second line 
corresponds to a channel 1 SNR of 2, the third line corresponds to a channel 1 SNR of 4, the 
fourth line corresponds to a channel 1 SNR of 8, the fifth line corresponds to a channel 1 SNR of 
16, and the sixth line corresponds to a channel 1 SNR of 32.

X
real

0.989 
0.989 
0.989 
0.989 
0.989 
0.989

X
calc

0.962 
0.986 
0.993 
0.982 
0.972 
0.972

X
%err

-2.8 
-0.3 
0.4 

-0.7 
-1.8 
-1.7

Nl 
real

1.038 
0.522 
0.263 
0.133 
0.068 
0.035

Nl 
calc

0.977 
0.486 
0.239 
0.127 
0.079 
0.050

Nl 
%err

-5.8 
-6.9 
-9.2 
-4.6 
16.6 
42.2

N2 
real

1.063 
1.063 
1.063 
1.063 
1.063 
1.063

N2 
calc

1.048 
1.038 
1.021 
1.009 
1.000 
1.000

N2 
%err

-1.4 
-2.4 
-4.0 
-5.2 
-5.9 
-6.0

Table 5.1 Summary of direct model performance in analyzing dummy data (X = 1, 
variable, W2 = 1,SM?2 = 1).

X
real

0.989 
0.989 
0.989 
0.989 
0.989 
0.989

X
calc

0.966 
0.986 
0.992 
0.984 
0.977 
0.978

X
%err

-2.4 
-0.3 
0.3 

-0.5 
-1.2 
-1.2

Nl 
real

1.038 
0.522 
0.263 
0.133 
0.068 
0.035

Nl 
calc

0.973 
0.486 
0.240 
0.125 
0.074 
0.043

Nl 
%err

-6.2 
-6.9 
-9.0 
-6.0 
8.2 

24.6

N2 
real

0.537 
0.537 
0.537 
0.537 
0.537 
0.537

N2 
calc

0.537 
0.526 
0.514 
0.505 
0.497 
0.497

N2 
%err

0.1 
-2.0
-4.2 
-5.9
-7.3 
-7.4

Table 5.2 Summary of direct model performance in analyzing dummy data (X = 1, Nl 
variable, N2 = 0.5, SNR2 = 2).
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X
real

0.989 
0.989 
0.989 
0.989 
0.989 
0.989

X
calc

0.968 
0.986 
0.991 
0.985 
0.981 
0.981

X
%err

-2.1 
-0.3 
0.2 

-0.4 
-0.8 
-0.8

Nl 
real

1.038 
0.522 
0.263 
0.133 
0.068 
0.035

Nl 
calc

0.970 
0.486 
0.240 
0.124 
0.070 
0.039

Nl 
%err

-6.5 
-6.8 
-8.8 
-7.0 
2.4 

12.6

N2 
real

0.272 
0.272 
0.272 
0.272 
0.272 
0.272

N2 
calc

0.281 
0.269 
0.261 
0.254 
0.247 
0.246

N2 
%err

3.3 
-1.1 
-4.0 
-6.6 
-9.1 
-9.4

Table 5.3 Summary of direct model performance in analyzing dummy data (X = 1, Af, 
variable, N2 = 0.25, SNR2 = 4).

X
real

0.989
0.989
0.989
0.989
0.989
0.989

X
calc

0.970
0.986
0.991
0.986
0.983
0.984

X
%err
-1.9
-0.3
0.2

-0.3
-0.6
-0.5

Nl 
real

1.038
0.522
0.263
0.133
0.068
0.035

Nl 
calc

0.968
0.486
0.241
0.123
0.067
0.036

Nl 
%err
-6.7
-6.8
-8.7
-7.7
-1.6
4.4

N2 
real

0.138
0.138
0.138
0.138
0.138
0.138

N2 
calc

0.152
0.140
0.134
0.128
0.123
0.122

N2 
%err

10.1
1.2

-3.2
-7.2

-11.4
-11.8

Table 5.4 Summary of direct model performance in analyzing dummy data (X = 1, Af, 
variable, N2 = 0.125, SNR2 = 8).

X
real

0.989
0.989
0.989
0.989
0.989
0.989

X
calc

0.972
0.986
0.991
0.987
0.985
0.986

X
%err
-1.7
-0.3
0.2

-0.2
-0.4
-0.3

Nl 
real

1.038
0.522
0.263
0.133
0.068
0.035

Nl 
calc

0.967
0.487
0.241
0.123
0.065
0.034

Nl 
%err
-6.8
-6.8
-8.6
-8.2
-4.4
-1.3

N2 
real

0.071
0.071
0.071
0.071
0.071
0.071

N2 
calc

0.089
0.075
0.070
0.066
0.061
0.060

N2 
%err

24.9
6.1

-0.6
-7.2

-14.0
-14.9

Table 5.5 Summary of direct model performance in analyzing dummy data (X - 1, 
variable, N2 = 0.0625, SNR2 = 16).
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X
real

0.989 
0.989 
0.989 
0.989 
0.989 
0.989

X
calc

0.973 
0.986 
0.991 
0.987 
0.987 
0.987

X
%err

-1.6 
-0.3 
0.2 

-0.2 
-0.2 
-0.2

Nl 
real

1.038 
0.522 
0.263 
0.133 
0.068 
0.035

Nl 
calc

0.966 
0.487 
0.241 
0.122 
0.064 
0.033

Nl 
%err

-6.9 
-6.8 
-8.5 
-8.5 
-6.4 
-5.2

N2 
real

0.037 
0.037 
0.037 
0.037 
0.037 
0.037

N2 
calc

0.061 
0.046 
0.040 
0.035 
0.031 
0.030

N2 
%err

67.3 
24.7 
8.6 

-5.4 
-16.5 
-18.3

Table 5.6 Summary of direct model performance in analyzing dummy data (X = 1, N{ 
variable, N2 = 0.03125, SNR2 = 32).
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6 MODEL PERFORMANCE ON REAL TEST DATA
Analyzing data obtained from a real world test situation is more difficult than was the artifi 

cial data case. Obviously, because the answer is unknown, it is harder to determine if the analy 
sis process is producing meaningful estimates of system parameters. The spectra are not white; 
instead they extend over several decades in power thereby limiting the degree with which they 
may be smoothed.

Data obtained during the test and evaluation of a set of three component Guralp CMG-3 
borehole sensors will be used to illustrate the practical analysis of real data. This data was cho 
sen because source files were still available on the ASL computer system disks thereby facilitat 
ing easy processing. The PSD estimates obtained for the two vertical sensors (serial numbers 
V349 and V350) is shown in Figure 6.1. Note that one sensor (V349) was considerably noisier 
than the other, and that both sensor PSD estimates lie above the quiet site noise model shown as 
a heavy line near the bottom of the figure. Both sensors had only recently been installed and had 
not been allowed to settle down. Therefore, the data presented herein should not be considered as 
indicative of the true performance capabilities of the instruments involved; instead, it should be 
regarded as a readily available source of time series on which to demonstrate the direct model 
analysis process under discussion herein.

Guralp CMG-3 Evaluation
POWER SPECTRAL DENSITIES

Ind B.CM.1070000

= Segment* averaged 18 
Frequencies gmoolhed 7

I 19-JUN-89 (LBH) 
07:19:1B___

DO 10~

PERIOD, SECONDS

Figure 6.1 PSD estimates (PI 1 and P22) for vertical sensor modules V349 and V350.
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The results of the direct application of Equations 3.4 and 3.5 to analyze the noise levels in 
modules V349 and V350 are shown in Figures 6.2 and 6.3. The indicated levels of noise lie well 
below the total powers in both channels below approximately 20 seconds. The ratio of the total 
power to the noise power is about 20 below 10 seconds.

.-13

Direct Noise Calculation
POWER SPECTRAL DENSITIES

Segments averaged IB
Frequencies smoothed 7
14-MAR -B9 (LGH)

11:49:09

I 95% CONFIDENCE LIMITS

1 10 

PERIOD. SECONDS

£ 10"

I I I II I 11

Direct Noise Calculation
POWER SPECTRAL DENSITIES 
fit      
NE 0  9  9

Segments averaged 16
Frequencies smoothed 7
14 -MAR-89 (LGH)
11:52:03

I 95% CONFIDENCE LIMITS

1 10

PERIOD. SECONDS

Figure 6.2 PSD estimates for Nl without 
equalization and without supersmoothing.

Figure 6.3 PSD estimates for N2 without 
equalization and without supersmoothing.
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Figure 6.4 Coherence between CMG-3 modules V349 
and V350.

However, the coherence between these two sensors shown in Figure 6.4 would suggest that 
this ratio should be greater because the coherence lies well above 0.9 over this frequency range.
High coherence (y2 greater than 0.9) indicates that most of the total power is coherent power 
(ground motion); therefore, the ratio of the total power to the noise power is approximately equal 
to the SNR and this should be considerably greater than 20 (see Section 4). Tabulated values for 
the coherence (not contained herein) between 4 and 9 seconds revealed a minimum of 0.9832, a 
maximum of 0.9998, and an average of 0.997 for the coherence over that period range. Compar 
ing these numbers with Table 4.1 predicts that the SNR should be somewhere around 332, not 
20.

Therefore, the results of directly applying equations 3.4 and 3.5 to the analysis of real test 
data appear to be in error. The most probable source of error is in the precision with which the 
two system transfer functions are known. Even very small errors in the transfer function will 
translate into relatively large errors in the calculated noise level because, at high coherence val 
ues, Equations 3.4 and 3.5 involve taking the differences between what should be nearly equal 
PSD estimates. A small error in the transfer function creates PSD estimates which are 
abnormally distinct and in turn translates into a false indication of high noise in the sensor.

Therefore, the gains of the two sensors were equalized by determining the average ratio of 
the PSD's over the range in which the coherence is high (4 to 9 seconds) and then adjusting one 
of the spectra to a level to make this ratio equal to 1. The resulting noise estimates are shown in 
Figures 6.4 and 6.5.

Notice that the calculated SNR for both sensors is now approximately 100 or greater in the 4 
to 9 second range after channel gain equalization as apposed to 20 before equalization. This 
level of SNR agrees much better with the high coherence values shown in Figure 6.4. The ratio 
in the transfer functions used to adjust the PSD's in this case was only 1.05; therefore an appar 
ent 5% error in the system gains translated into a very large error in the estimated noise levels.

The PSD estimates for N{ and N2 in Figures 6.5 and 6.6 are very noisy and indefinite them 
selves. It is evident that further smoothing would make things much neater. Several smoothing 
algorithms were tried with varying success. A very attractive low-pass filter via the Fast Fourier 
Transform algorithm (see Press et al. pp.495-497) worked beautifully on the dummy white noise
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Direct Noise Calculation
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Figure 6.5 PSD estimates for Nl with 
equalization but without supersmoothing.

Figure 6.6 PSD estimates for N2 with 
equalization but without supersmoothing.

analysis of Section 5 but failed miserably when applied to the real data of this section. It 
appeared that the windowing process in the algorithm was unable to resolve the extended 
dynamic range in the real data; possibly a different window such as the Taylor window would 
cure the problem. This approach is mentioned here because the author feels that it shows prom 
ise if further refined.

The algorithm finally chosen to supersmooth the PSD was a refinement of smoothing in the 
frequency domain (see Bendat & Piersol pp.327-329) in which a least squares fit to the data 
points lying below and above a particular PSD data point are used to calculate a smoothed value 
for that data point instead of merely averaging the data points. The crux of this type of process is 
the choice of how many adjacent data points to include in calculating the smoothed value for 
each data point. The data in Figures 6.5 and 6.6 indicate that more smoothing is necessary at 
shorter periods because the noise data (Nl and N2) are much more ragged at shorter periods and 
because the density of data points is greater in that portion of the figures. After several empkical 
tests, the following parameters were found to produce reasonable results on real data.
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Figure 6.7 Number of points included in supersmoothing as function of period.

Each data point below 10 seconds was smoothed with the 30 data points both lying immedi 
ately above and below it. The number of data points included in the smoothing operation for 
data points lying between 10 and 120 seconds was variable starting with 30 at 10 seconds and 
decreasing linearly with period to 1 at 120 seconds. Above 120 seconds, the number included 
was constant at 1 above and 1 below the point being smoothed. The total number of data points 
included in each smoothing operation is depicted in Figure 6.7. The details of this smoothing 
algorithm are not critical; the parameters can probably be varied considerably without significant 
changes in the results.
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Direct Noise Calculation
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Direct Noise Calculation
POWER SPECTRAL DENSITIES

- He a -e  8
Segments averaged IS
Frequencies smoothed 7
14-MAR B9 (U5H)
13:26:41

I 95% CONFIDENCE UW1TS

1 10 

PERIOD. SECONDS

Figure 6.8 Nl PSD estimates with equal 
ization and with supersmoothing.

Figure 6.9 N2 PSD estimates with equal 
ization and with supersmoothing.

During the course of this investigation one additional empirical smoothing operation was 
deemed necessary to make the results palatable. If the sensor being evaluated is a very high 
quality quiet sensor, the coherent power term in Equations 3.5 and 3.6 approaches the total 
power term. Due to the impossibility of estimating the PSD's to an infinite precision, the esti 
mate for the coherent power sometimes exceeds the estimate for the total power. The rather dis 
concerting result is a negative estimate for the noise power under these conditions. For this 
reason, the noise PSD's presented herein have been calculated by taking the absolute value of 
Equations 3.5 and 3.6.

The sequence of events in processing data with supersmoothing is as follows. First the 
channel self PSD's (P^ and P22), the real, and the imaginary parts of the cross spectral power are
supersmoothed using the process described above. Then the two channel noise spectra (N{ and 
N2) and the coherent power (X) are calculated using Equations 3.3, 3.4, and 3.5 respectively. 
Finally, TV,, N2 and X are supersmoothed.
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Figures 6.8 and 6.9 contain the results of applying supersmoothing to the test results of Fig 
ures 6.5 and 6.6. The overall improvement in the appearance of the spectra is dramatic and the 
SNR's are nearly what should be expected based on the coherence function analysis of Section 4. 
In the figures, the visually estimated SNR's range from about 130 to nearly 2000. This is 
approximately the range predicted by the coherence function which ranges from 0.9832 to 
0.9998 thereby indicating that the SNR's must be at least as large as from 49 to over 998.9 (see 
Table 4.1).

Direct Noise Calculation
POWER SPECTRAL DENSITIES

~ Segmenta averaged 16

17-MAR-BB (IGH) 
06:49:47 

I 05X CONFIDENCE UMITS

PERIOD. SECONDS

Figure 6.10 Coherent PSD estimate between V349 and V350.

A comparison between the total estimated power output of V350 and the coherent power 
estimate between the two sensor outputs is shown in Figure 6.10. Careful study of the two PSD 
estimates reveals that the estimate for the coherent power lies above the estimate for the total 
power at some points lying above 20 seconds. This is a bit disconcerting but not too worrisome 
when one superimposes the 95% probable error limits on the PSD estimates. The overlap is well 
within the possible errors arising from the analysis process. The important observation to make 
from this data is that most of the power output from sensor V350 is coherent power. Since the 
PSD estimate above 20 seconds is higher than one should expect for a quiet site, the indication is 
that there is a source of coherent power within the system over and above the coherent ground 
motion input to the system. A common source of this type of noise is noise on the common 
power supply bus which is not properly filtered and isolated at long periods. Therefore, the anal 
ysis provides a clue of an area within the CMG-3 system which may be generating excessive 
noise.
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Figure 6.11 PSD estimates (PI 1 and P22) 
for Guralp H376 and H377 horizontal sensors.

Figure 6.12 PSD estimates (PI 1 and 
P22) for Streckeisen SH1 and SH2 horizontal 
sensors.

Finally the direct model analysis process will be applied to data obtained in side-by-side 
comparative evaluations of a set of Guralp CMG-3 horizontals and a set of Streckeisen horizon 
tals all four oriented east-west. Figures 6.11 and 6.12 contain PSD estimates for Guralps and 
Streckeisens respectively. Notice that the CMG-3 sensors are considerably noisier than the 
Streckeisens at periods above about 15 seconds. Figures 6.13 and 6.14 are the coherence func 
tions for both sets of sensors; the Streckeisens demonstrate considerable coherence even out to 
1000 seconds.

Figures 6.15 and 6.16 contain PSD estimates of the total system power as compared to esti 
mates of the noise power in the CMG-3 sensors calculated by the direct method. Notice that the 
total system power above about 20-25 seconds is almost completely composed of noise because 
the estimated noise level almost overlays the estimates of the total system power in both sensors.
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Figure 6.13 Coherence between Guralp 
H376 and H377 sensors.

Figure 6.14 Coherence between Streckei- 
sen horizontal sensors.

In contrast, the estimated system noise levels as calculated by the direct method for the 
Streckeisen sensors shown in Figures 6.17 and 6.18 lies considerably below the total system 
power estimates for both sensors. Sensor S2E is somewhat quieter at periods beyond 70 seconds 
but slightly noisier below 30 seconds. This data illustrates a significant asset of the direct 
method for evaluating relative system performance levels; the noise levels in the sensors can be 
evaluated independently and realistic estimates for both systems can be made even though they 
are different.

Finally, Figures 6.19 and 6.20 contain the coherent power estimates as calculated by the 
direct method between the CMG-3 sensors and between the Streckeisen sensors respectively. 
The coherent power estimate for the CMG-3's lies far below the total power estimate at periods 
above 10 seconds indicating that the CMG-3's are failing to resolve true ground motion above 10 
seconds. On the other hand, the Streckeisen coherent power estimate lies close to the total sys 
tem power over the entire range of period, indicating that the Streckeisen systems are sensing 
true ground motion over the entire range of the spectrum.

The last figure contains an estimate of the probable dynamic range of the direct model when 
applied to real data. The data in Figure 6.21 was obtained by passing the same digitized signal to 
both of the inputs of the analysis process; this is equivalent to making N, = N2 = 0, or to making
NI coherent with N2 in the direct model. Theoretically, the calculated SNR's in both channels 
should then be infinite. However, visual scaling of the data in Figure 6.21 yields an SNR of only 
approximately 107 . The departure from theory is probably due to numerical precision problems 
such as round off error within the computing process. Regardless of the source of the inaccura 
cies, the data in Figure 6.21 establishes that the direct model is capable of resolving SNR's 
which far exceed those likely to be found in real world side-by-side seismometer evaluation data 
processing.
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Figure 6.15 Total system power (PI 1) and Figure 6.16 Total system power (P22) 
noise estimates (Nl) for H377. and noise estimates (N2) for H376.
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Figure 6.17 Total system power (P11) and Figure 6.18 Total system power (P11) 
noise estimates (Nl) for S1E. and noise estimates (Nl) for S2E.
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Figure 6.19 Coherent power estimate 
between H377 and H376.

Figure 6.20 Coherent power estimate 
between S1E and S2E.
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Figure 6.21 Estimate of the probable dynamic range of the direct model analysis process.
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7 CONCLUSIONS AND RECOMMENDATIONS
A method for calculating system noise levels directly from the measured PSD outputs of a 

side-by-side seismometer evaluation has been derived and demonstrated on dummy and real 
world data. The technique is general in that it requires no special assumptions about the transfer 
functions other than they be accurately known, and no assumptions are made about the relative 
noise levels of the two sensors involved. The true meaning of the coherence function in terms of 
system SNR's and the model parameters of Figure 3.1 has been demonstrated and used as a tool 
to assist in the noise analysis.

Significant improvements in this analysis process may be possible. In particular, the 
smoothing operation might be improved by a more exotic model such as a higher order fit to the 
smoothed data points. The details of the effect of numerical round off have not been investigated 
and may be important at high SNR's where small differences between large numbers come into 
play.
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A APPENDIX
The analysis of Section 3 ignores noise sources which may occur after the band shaping 

response of the two sensors (//,and H2). Possible sources of post response noise include flat 
band gain, and noise generated in the instrumentation system used to monitor the sensor per 
formance. Fred Followill of Lawrence Livermore National Laboratories suggested that it would 
be more realistic to include this noise in the analysis. Figure A.I contains a linear system model 
which includes these noise sources.

Figure A. 1 Linear system model of side-by-side evaluation of two seismometer systems 
including noise sources introduced by instrumentation after the band shaping response.

In the figure, N3 and N4 are the new noise PSD's associated with post response noise sources. 

From the model, the power spectral density of the output of system 1 is given by

pi i =1 H\ I2 \-X + Ni + N3 Equation A. 1 

and the same quantity for system 2 is

P22 =| H2 f \X +NJ +N4 Equation A 2

The cross spectral density between the outputs of the two systems remains unchanged from the 
previous analysis.

P12 = HJilX Equation A .3 

The solution of these equations follows the previous solution. Solve Equation 3.1 for Af, to yield

Equation A A

Substituting for X from Equation A. 3 yields
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P 11 -1*3 P\2N.=          - Equation A. 5
I #1 |2 H,H;

Similarly, solving Equation A.2 for N2 and substituting for X from Equation A.3 yields

p  W p
22 4 12N2 =       -   - Equation A .6 

I #2 1

In Equations A.5 and A.6 it is evident that, if the levels of instrumentation noise are known, the 
effects of this noise on the estimates for the sensor self noise can be eliminated by merely sub 
tracting the instrumentation noise levels (N3 or N4) from the total output power estimates (Pn or
^22). Estimates for the instrumentation noise can be obtained by performing appropriate 
measurements with the inputs to the instrumentation system terminated with proper impedances.

At first examination, the expression for the coherence function appears to be considerably 
more complicated but it readily simplifies as follows. Start with the definition for the coherence 
function

~ .. A -Equation A .7
P\\P 22 

Substituting for Pn, P22 , and P12 from equations A.I, A.2, and A.3 respectively yields

2 | H. 2/1 2 \Y =    ;             ;          Equation A .8 
i\H1 \2 [X+NA+N3 }{\H2 ?[X+N2\+N4 }

Dividing the numerator and denominator of right side by | HiH2 \ and multiplying out the denom 
inator gives

X2
Equation A. 9

X2 +X[Nl +N2\1 ,

Refactoring the denominator yields
X2

\ N, N4X2 +X\Nl +N2 + 2 + -
A T L \»i\ l»2l

Equation A.W

Regrouping the linear coefficient of X and factoring the constant term in the denominator we 
have

X2
Equation A.ll

If we let
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N.=N.+ 1 ' Equation A.12

and

\H2 f

Equation A. 11 becomes

Equation A. 13

Equation A.14

This equation has the same form as Equation 4.3 in the original derivation of the model expres 
sion for the coherence function contained in Section 4 above. The similarity in the two models is 
obvious if the post response instrumentation noise shown in Figure A.I is referred to the input of 
the sensor system as shown in Figure A.2 below.

Figure A.2 Linear system model of side-by side evaluation of two seismometer systems includ 
ing noise sources introduced by instrumentation after the band shaping response with the instru 
mentation noise referred to the sensor input.

Therefore, the portion of the derivation in Section 4 following Equation 4.3 leading to the 
hyperbolic relationship between the signal-to-noise ratio and the coherence function can be 
applied to the more general model being analyzed in this appendix merely by substituting

Equation A.15

and
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, 4
N = AT   - Equation A. 16 

\H2 f *

in Equations 4.4 through 4.7.
The hyperbolic curves of Figures 4.1 and 4.2 remain applicable to the general case as long 

as the SNR's read from the curve for a given coherence are interpreted as being composed of 
incoherent noise from two sources. The minimum sensor SNR is probably greater than indicated 
by the curves in the two figures because post response noise degrades the measured coherence.

In summary, if instrumentation noise levels are significantly high, their effects should be 
considered in analyzing the data via the direct method presented in this report. It is relatively 
easy to correct the calculated sensor noise levels for the effects of instrumentation noise using 
Equations A.5 and A.6.

A-4


